Saltar para: Posts [1], Pesquisa e Arquivos [2]



O Mirante

ENTREVISTA  | 01-09-2016 10:04 
Agroglobal tem transmitido uma imagem diferente do agricultor e da agricultura
 
 
Joaquim Pedro Torres, organizador da maior feira profissional, que decorre nos campos de Valada.

Joaquim Pedro Torres é um profissional da agricultura, um produtor que em 2009 percebeu que podia dar um contributo para a melhoria, a troca de experiências e a discussão das questões do sector. Nesse ano avança com outros elementos para a Feira Nacional do Milho, o primeiro certame em Portugal num campo de milho com demonstrações ao vivo de técnicas e maquinaria. A feira projectou-se, ganhou importância e evoluiu para um modelo mais alargado, passando a chamar-se Agroglobal. É hoje considerada uma das maiores feiras profissionais da Europa. Nesta entrevista, Joaquim Pedro Torres fala da feira e de alguns temas da agricultura que estão na ordem do dia.

Como surge a ideia de quem está preocupado com a produção montar uma feira para profissionais? Por estar inserido no processo produtivo sentia que havia uma lacuna nas feiras agrícolas em Portugal. A possibilidade de estabelecer uma parceria com o INIAV - Instituto Nacional de Investigação Agrária e Veterinária, dono dos terrenos onde a feira se realiza, foi um aspecto muito importante, tal como encontrar os elementos certos, como a Agroterra e a Câmara do Cartaxo.
No início foi fácil convencer as entidades do sector? Já existiam eventos parecidos em outras partes do mundo, sobretudo nos Estados Unidos da América, e as empresas concordaram que havia necessidade de fazer uma feira com estas características em Portugal. O facto de estarmos há muito tempo na agricultura levou a que se gerasse uma confiança mútua. O projecto tinha condições para ser convincente e hoje temos praticamente na feira todas as empresas da fileira agrícola, além de empresas que não sendo do sector dão a este uma importância cada vez maior, como bancos ou petrolíferas.
Por que é que têm resistido a abrir a feira a uma vertente mais popular? Recebemos de bom grado todo o tipo de visitantes mas para nós é importante que se mantenha na Agroglobal um ambiente de partilha de conhecimento agrícola, para que resultem negócios. É essa a razão pela qual estão aqui as empresas. O não desvirtuar este ambiente é fundamental para o sucesso da feira e se ela se transformasse num certame de massas, de pessoas que não estão interessadas no negócio, tornava esta característica menos acentuada.
Em que é que a Agrobal tem contribuído para a agricultura? Contribuiu para transmitir uma imagem diferente daquilo que é o agricultor e a agricultura. Nem sempre a sociedade foi generosa a entender o sector, que foi muitas vezes entendido como um sector menos preparado tecnologicamente, menos evoluído, o que não tem a ver com a realidade. Temos tido a preocupação de trazer à Agroglobal pessoas de fora do sector, pessoas que formam opinião, e quando aqui chegam ficam muito admiradas com a profundidade e profissionalismo com que os assuntos são tratados. Isso contribui para que quem tem a responsabilidade de gerir os destinos do país, também a dirigir uma nova atenção para o sector, o que tem acontecido.
Inicialmente a feira era praticamente dedicada ao milho e evoluiu para uma feira mais abrangente. Como se deu esta evolução? Foi feira do milho apenas na primeira edição porque desde logo se verificou que o debate ultrapassou muito esta cultura. Apesar de o milho ter um papel importante a feira evoluiu para outro tipo de culturas, pretendendo-se representar o todo da agricultura portuguesa. Foi quase que uma imposição natural porque era evidente a necessidade de uma feira deste tipo ser transversal.
A Agroglobal tem vindo também a acompanhar a evolução nas culturas que têm vindo a surgir? Há espaço para outro tipo de culturas, que são pequenos nichos mas que têm vindo a crescer e que merecem um sinal da Agroglobal. Hoje as soluções técnicas são muitas e permitem adaptar as condições às exigências das culturas. Não somos um país com condições para desenvolver tudo, mas com as condições técnicas é possível e esses nichos têm vindo a alargar-se e se essas culturas não vingarem é porque o mercado não o permite.
O milho é uma cultura que vai conseguir manter a sua importância? Tem passado por vários ciclos de entusiasmo. Neste momento estamos a passar por uma fase menos favorável. Há um enquadramento de preços internacional no qual o produtor português não se sente cómodo e as áreas de produção têm vindo a diminuir um pouco. A Europa tem vindo a introduzir uma série de restrições, que tem a ver com a introdução de variedades transgénicas e matérias activas e que não existem em países grandes produtores, como Estados Unidos da América, Brasil e Argentina.
Por que motivo há tanta resistência à introdução de milho transgénico (geneticamente modificado) na Europa? Há um conjunto de regras que se vão instalando no mercado, por vezes de uma maneira estranha, porque criam-se limitações à produção mas não se criam limitações à importação. Se quiséssemos ter um país e uma Europa livre de transgénicos então seriam proibidas as importações de países que utilizam esta tecnologia de produção. O problema é concorrermos em termos de preço e usando armas diferentes.
Os transgénicos são assim tão prejudiciais? Se países que têm dado provas de extremos cuidados e eficiência no controlo de situações nocivas à saúde o utilizam de uma forma generalizada, quero crer que não são prejudiciais.

Beterraba é viável mas não vai ser o que era
A beterraba sacarina, impulsionada pela instalação de uma fábrica em Coruche, que agora está inactiva, pode vir a ganhar o fulgor de antigamente? A beterraba, em termos produtivos, funciona muito bem em Portugal. O problema é que o mercado mundial do açúcar sofreu muitas transformações. O açúcar de beterraba na Europa era uma produção muito protegida em termos de preços e conseguia proporcionar aos agricultores bons níveis de rentabilidade, mas a entrada de açúcar de outras proveniências dificultou a capacidade de produzir a preços concorrenciais. Estudos recentes dizem que há capacidade para produzir beterraba em Portugal, a níveis compensadores. A cultura nunca mais vai ser o que era mas pode ser viável.
O que diz dos agricultores que passam a vida a lamentar-se? A agricultura é uma actividade difícil que normalmente não dá grandes níveis de remuneração do trabalho. De uma forma geral a produção agrícola não especializada é uma actividade que não tem muitas barreiras à entrada. O nível de conhecimento que é preciso está disponível no mercado e qualquer pessoa pode fazer uma cultura de milho mesmo não sabendo plantá-lo. O que faz com que haja muita concorrência e os agricultores não consigam fazer valer factores que se possam distinguir de outros agricultores. É uma actividade tão aberta em que a concorrência está em permanência.
Mas o queixume não dá uma boa imagem do sector… O que se vê é a necessidade de se diferenciar, o que obriga a aprofundar ao máximo a utilização dos recursos e conhecimentos modernos.
Quando e porquê a agricultura passou a estar mais na moda? Infelizmente por desaceleração dos outros sectores de actividade, como a construção civil e a indústria. A agricultura aguentou muito melhor o embate e passou, em termos relativos, a ficar mais valorizada. Mas também porque foi conseguindo passar a imagem daquilo que realmente vale.
O que evoluiu na agricultura da região nos últimos anos? A agricultura do Ribatejo anda ao melhor nível desde há muito tempo. Não vejo há muitos anos, de Abrantes a Vila Franca de Xira, um hectare de terra que não esteja cultivado ao melhor nível do que se faz no mundo. Agora há é mais visibilidade do sector.

Organizador condecorado pelo Presidente da República

Joaquim Pedro Torres, 61 anos, o rosto da Agroglobal, foi condecorado no 10 de Junho, em 2009, durante as comemorações do Dia de Portugal, em Santarém, pelo Presidente da República, Aníbal Cavaco Silva, com a Ordem de Mérito Agrícola, Comercial e Industrial. Licenciou-se em 1972 no Instituto Superior de Agronomia em Lisboa, tendo feito estágio na Estação Zootécnica Nacional, no Vale de Santarém. 
Em 1977 avança com a primeira iniciativa empresarial agrícola, com a produção de melão em Salvaterra de Magos, que acabou por não correr bem. Dois anos depois ingressou nos quadros da então Direcção Regional de Agricultura do Ribatejo e Oeste, na Divisão de Hidráulica e Engenharia Agrícola, mantendo em paralelo algumas iniciativas empresariais agrícolas, como a criação e engorda de perus e produção de milho em parcelas arrendadas.
Forcado dos Amadores de Santarém durante nove anos, ingressa em 1983 no Banco Pinto e Sotto Mayor, na recém criada Direcção de Agricultura Industrias Alimentares e Pescas, chefiando a delegação do Ribatejo e Oeste, com sede em Santarém. Em 1989 o aumento de dimensão potencial da actividade agrícola leva-o a criar, em sociedade com a Irricampo (representante de equipamentos de rega), a empresa Valinveste, Investimentos e Gestão Agrícola, vocacionada para a produção agrícola, acompanhamento técnico em explorações agrícolas de terceiros e estudo e preparação de projectos de investimento. Em 2008 a Valinveste atinge a facturação de 12 milhões de euros.
Joaquim Pedro Torres detém actualmente 94 por cento do capital da Valinveste, uma empresa sem terras que foi um dos maiores (e em alguns anos o maior) produtores de milho e beterraba da Europa Comunitária. Hoje é o maior produtor nacional de milho. A empresa tem estudado nos últimos anos um grande número de projectos de investimento, sem participar na produção, em Portugal, mas também na Tunísia, Moçambique e Roménia.

Feira com 270 expositores

A Agroglobal decorre em Valada do Ribatejo, concelho do Cartaxo, num terreno agrícola do Estado, entre os dias 7 e 9 de Setembro. Com uma periodicidade bianual, a feira demora cerca de um ano a ser preparada e a sua planificação adapta-se ao que as empresas do sector, muitas delas internacionais, querem comunicar aos profissionais. Na Agroglobal os produtores têm acesso a uma série de recursos que lhes permite planificar negócios. Por exemplo pode ver uma máquina a trabalhar, saber logo as suas características e preço, ir aos stands das entidades estatais saber que tipo de apoios existem, depois ir aos espaços das entidades bancárias informar-se sobre condições de financiamento.
Este ano a feira vai ter 270 expositores, número bastante expressivo para uma feira num país com a dimensão de Portugal. O organizador da Agroglobal, Joaquim Pedro Torres, refere que a maior feira do género em França tem cerca de 300 expositores. Na feira de Valada do Ribatejo, em determinadas alturas, vai ser possível ver em simultâneo uma centena de máquinas a trabalhar nos terrenos, fazendo demonstrações, por exemplo de colheitas ou mobilização dos solos. No espaço de 160 hectares estão cultivadas para a feira culturas como o milho, tomate, ferragens, vinha, batata, girassol ou frutos vermelhos, além de uma área dedicada à floresta e sobretudo ao eucalipto.
No espaço vão estar montados dois auditórios. Um dedicado a temas mais generalistas da agricultura e que tem por nome Auditório Armando Sevinate Pinto, uma forma de homenagear o engenheiro agrónomo, falecido em 2015, que foi ministro da agricultura e um apoiante da Agroglobal. No segundo auditório, com o nome Companhia das Lezírias, vão abordar-se temas mais específicos, como a agricultura de precisão, o maneio da água, entre outros. O certame inclui ainda um pavilhão da inovação, que vai mostrar e demonstrar as mais recentes tecnologias.
A Agroglobal registou na edição passada cerca de 20 mil visitantes, um número que ficou aquém das expectativas devido ao mau tempo que se fez sentir na altura. Para a edição deste ano são esperados mais do dobro dos visitantes, que não pagam a entrada. A Agroglobal é uma feira que visa gerar trocas de experiências, encontros e sobretudo é uma plataforma de negócios do sector agrícola, na qual participam bastantes estrangeiros.

Autoria e outros dados (tags, etc)

The future of Agriculture

por papinto, em 15.06.16
The Economist, 20160611

Factory fresh 

If agriculture is to continue to feed the world, it needs to become more like manufacturing, says Geoffrey Carr. Fortunately, that is already beginning to happen

TOM ROGERS is an almond farmer in Madera County, in California’s Central Valley. Almonds are delicious and nutritious. They are also lucrative. Californian farmers, who between them grow 80% of the world’s supply of these nuts, earn $11 billion from doing so. But almonds are thirsty. A calculation by a pair of Dutch researchers six years ago suggested that growing a single one of them consumes around a gallon of water. This is merely an American gallon of 3.8 litres, not an imperial one of 4.5 litres, but it is still a tidy amount of H2O. And water has to be paid for.

Technology, however, has come to Mr Rogers’s aid. His farm is wired up like a lab rat. Or, to be more accurate, it is wirelessed up. Moisture sensors planted throughout the nut groves keep track of what is going on in the soil. They send their results to a computer in the cloud (the network of servers that does an increasing amount of the world’s heavy-duty computing) to be crunched. The results are passed back to the farm’s irrigation system—a grid of drip tapes (hoses with holes punched in them) that are filled by pumps. 

The system resembles the hydroponics used to grow vegetables in greenhouses. Every half-hour a carefully calibrated pulse of water based on the cloud’s calculations, and mixed with an appropriate dose of fertiliser if scheduled, is pushed through the tapes, delivering a precise sprinkling to each tree. The pulses alternate between one side of the tree trunk and the other, which experience has shown encourages water uptake. Before this system was in place, Mr Rogers would have irrigated his farm about once a week. With the new little-but-often technique, he uses 20% less water than he used to. That both saves money and brings kudos, for California has suffered a four-year-long drought and there is social and political, as well as financial, pressure to conserve water.

Mr Rogers’s farm, and similar ones that grow other high-value but thirsty crops like pistachios, walnuts and grapes, are at the leading edge of this type of precision agriculture, known as “smart farming”. But it is not only fruit and nut farmers who benefit from being precise. So-called row crops—the maize and soyabeans that cover much of America’s Midwest—are being teched up, too. Sowing, watering, fertilising and harvesting are all computer-controlled. Even the soil they grow in is monitored to within an inch of its life.

Farms, then, are becoming more like factories: tightly controlled operations for turning out reliable products, immune as far as possible from the vagaries of nature. Thanks to better understanding of DNA, the plants and animals raised on a farm are also tightly controlled. Precise genetic manipulation, known as “genome editing”, makes it possible to change a crop or stock animal’s genome down to the level of a single genetic “letter”. This technology, it is hoped, will be more acceptable to consumers than the shifting of whole genes between species that underpinned early genetic engineering, because it simply imitates the process of mutation on which crop breeding has always depended, but in a far more controllable way.

Understanding a crop’s DNA sequence also means that breeding itself can be made more precise. You do not need to grow a plant to maturity to find out whether it will have the characteristics you want. A quick look at its genome beforehand will tell you.

Such technological changes, in hardware, software and “liveware”, are reaching beyond field, orchard and byre. Fish farming will also get a boost from them. And indoor horticulture, already the most controlled and precise type of agriculture, is about to become yet more so.

In the short run, these improvements will boost farmers’ profits, by cutting costs and increasing yields, and should also benefit consumers (meaning everyone who eats food) in the form of lower prices. In the longer run, though, they may help provide the answer to an increasingly urgent question: how can the world be fed in future without putting irreparable strain on the Earth’s soils and oceans? Between now and 2050 the planet’s population is likely to rise to 9.7 billion, from 7.3 billion now. Those people will not only need to eat, they will want to eat better than people do now, because by then most are likely to have middling incomes, and many will be well off.


The Food and Agriculture Organisation, the United Nations’ agency charged with thinking about such matters, published a report in 2009 which suggested that by 2050 agricultural production will have to rise by 70% to meet projected demand. Since most land suitable for farming is already farmed, this growth must come from higher yields. Agriculture has undergone yield-enhancing shifts in the past, including mechanisation before the second world war and the introduction of new crop varieties and agricultural chemicals in the green revolution of the 1950s and 1960s. Yet yields of important crops such as rice and wheat have now stopped rising in some intensively farmed parts of the world, a phenomenon called yield plateauing. The spread of existing best practice can no doubt bring yields elsewhere up to these plateaus. But to go beyond them will require improved technology.

This will be a challenge. Farmers are famously and sensibly sceptical of change, since the cost of getting things wrong (messing up an entire season’s harvest) is so high. Yet if precision farming and genomics play out as many hope they will, another such change is in the offing.

Advertisement

Smart farms: Silicon Valley meets Central Valley 

In various guises, information technology is taking over agriculture

ONE way to view farming is as a branch of matrix algebra. A farmer must constantly juggle a set of variables, such as the weather, his soil’s moisture levels and nutrient content, competition to his crops from weeds, threats to their health from pests and diseases, and the costs of taking action to deal with these things. If he does the algebra correctly, or if it is done on his behalf, he will optimise his yield and maximise his profit.

The job of smart farming, then, is twofold. One is to measure the variables going into the matrix as accurately as is cost-effective. The other is to relieve the farmer of as much of the burden of processing the matrix as he is comfortable with ceding to a machine.

An early example of cost-effective precision in farming was the decision made in 2001 by John Deere, the world’s largest manufacturer of agricultural equipment, to fit its tractors and other mobile machines with global-positioning-system (GPS) sensors, so that they could be located to within a few centimetres anywhere on Earth. This made it possible to stop them either covering the same ground twice or missing out patches as they shuttled up and down fields, which had been a frequent problem. Dealing with this both reduced fuel bills (by as much as 40% in some cases) and improved the uniformity and effectiveness of things like fertiliser, herbicide and pesticide spraying.

Bugs in the system

Bacteria and fungi can help crops and soil

MICROBES, though they have a bad press as agents of disease, also play a beneficial role in agriculture. For example, they fix nitrogen from the air into soluble nitrates that act as natural fertiliser. Understanding and exploiting such organisms for farming is a rapidly developing part of agricultural biotechnology.
At the moment, the lead is being taken by a collaboration between Monsanto and Novozymes, a Danish firm.
This consortium, called BioAg, began in 2013 and has a dozen microbe-based products on the market. These include fungicides, insecticides and bugs that liberate nitrogen, phosphorous and potassium compounds from the soil, making them soluble and thus easier for crops to take up. Last year, researchers at the two firms tested a further 2,000 microbes, looking for species that would increase maize and soyabean yields. The top-performing strains delivered a boost of about 3% for both crops.
In November 2015 Syngenta and DSM, a Dutch company, formed a similar partnership. And earlier that year, in April, DuPont bought Taxon Biosciences, a Californian microbes firm. And hopeful start-ups abound. One such is Indigo, in Boston. Its researchers are conducting field tests of some of its library of 40,000 microbes to see if they can alleviate the stress on cotton, maize, soyabeans and wheat induced by drought and salinity. Another is Adaptive Symbiotic Technologies, of Seattle. The scientists who formed this firm study fungi that live symbiotically within plants. They believe they have found one, whose natural partner is panic grass, a coastal species, which confers salinity-resistance when transferred to crops such as rice.
The big prize, however, would be to persuade the roots of crops such as wheat to form partnerships with nitrogen-fixing soil bacteria. These would be similar to the natural partnerships formed with nitrogen-fixing bacteria by legumes such as soyabeans. In legumes, the plants’ roots grow special nodules that become homes for the bacteria in question. If wheat rhizomes could be persuaded, by genomic breeding or genome editing, to behave likewise, everyone except fertiliser companies would reap enormous benefits.

 

Since then, other techniques have been added. High-density soil sampling, carried out every few years to track properties such as mineral content and porosity, can predict the fertility of different parts of a field. Accurate contour mapping helps indicate how water moves around. And detectors planted in the soil can monitor moisture levels at multiple depths. Some detectors are also able to indicate nutrient content and how it changes in response to the application of fertiliser. 

All of this permits variable-rate seeding, meaning the density of plants grown can be tailored to local conditions. And that density itself is under precise control. John Deere’s equipment can plant individual seeds to within an accuracy of 3cm. Moreover, when a crop is harvested, the rate at which grains or beans flow into the harvester’s tank can be measured from moment to moment. That information, when combined with GPS data, creates a yield map that shows which bits of land were more or less productive—and thus how accurate the soil and sensor-based predictions were. This information can then be fed into the following season’s planting pattern.


Farmers also gather information by flying planes over their land. Airborne instruments are able to measure the amount of plant cover and to distinguish between crops and weeds. Using a technique called multispectral analysis, which looks at how strongly plants absorb or reflect different wavelengths of sunlight, they can discover which crops are flourishing and which not. 

Sensors attached to moving machinery can even take measurements on the run. For example, multispectral sensors mounted on a tractor’s spraying booms can estimate the nitrogen needs of crops about to be sprayed, and adjust the dose accordingly. A modern farm, then, produces data aplenty. But they need interpreting, and for that, information technology is essential.

Platform tickets

Over the past few decades large corporations have grown up to supply the needs of commercial farming, especially in the Americas and Europe. Some are equipment-makers, such as John Deere. Others sell seeds or agricultural chemicals. These look like getting larger still. Dow and DuPont, two American giants, are planning to merge. Monsanto, another big American firm, is the subject of a takeover bid by Bayer, a German one. And Syngenta, a Swiss company, is being bid for by ChemChina, a Chinese one.

Business models are changing, too. These firms, no longer content merely to sell machinery, seed or chemicals, are all trying to develop matrix-crunching software platforms that will act as farm-management systems. These proprietary platforms will collect data from individual farms and process them in the cloud, allowing for the farm’s history, the known behaviour of individual crops strains and the local weather forecast. They will then make recommendations to the farmer, perhaps pointing him towards some of the firm’s other products.

But whereas making machinery, breeding new crops or manufacturing agrochemicals all have high barriers to entry, a data-based farm-management system can be put together by any businessman, even without a track record in agriculture. And many are having a go. For example, Trimble Navigation, based in Sunnyvale, at the southern end of Silicon Valley, reckons that as an established geographical-information company it is well placed to move into the smart-farming market, with a system called Connected Farms. It has bought in outside expertise in the shape of AGRI-TREND, a Canadian agricultural consultancy, which it acquired last year.

By contrast, Farmobile of Overland Park, Kansas, is a startup. It is aimed at those who value privacy, making a feature of not using clients’ data to sell other products, as many farm-management systems do. Farmers Business Network, of Davenport, Iowa, uses almost the opposite model, acting as a co-operative data pool. Data in the pool are anonymised, but everyone who joins is encouraged to add to the pool, and in turn gets to share what is there. The idea is that all participants will benefit from better solutions to the matrix.

Some firms focus on market niches. iTK, based in Montpellier, France, for example, specialises in grapes and has built mathematical models that describe the behaviour of all the main varieties. It is now expanding into California.

Thanks to this proliferation of farm-management software, it is possible to put more and more data to good use if the sensors are available to provide them. And better, cheaper sensors, too, are on their way. Moisture sensors, for example, usually work by measuring either the conductivity or the capacitance of soil, but a firm called WaterBit, based in Santa Clara, California, is using a different technology which it says can do the job at a tenth of the price of the existing products. And a sensor sold by John Deere can spectroscopically measure the nitrogen, phosphorous and potassium composition of liquid manure as it is being sprayed, permitting the spray rate to be adjusted in real time. This gets round the problem that liquid manure, though a good fertiliser, is not standardised, so is more difficult than commercial fertiliser to apply in the right quantities.

Things are changing in the air, too. In a recapitulation of the early days of manned flight, the makers of unmanned agricultural drones are testing a wide range of designs to find out which is best suited to the task of flying multispectral cameras over farms. Some firms, such as Agribotix in Boulder, Colorado, prefer quadcopters, a four-rotored modern design that has become the industry standard for small drones, though it has limited range and endurance. A popular alternative, the AgDrone, built by HoneyComb of Wilsonville, Oregon, is a single-engine flying wing that looks as if it has escaped from a 1950s air show. Another, the Lancaster 5, from PrecisionHawk of Raleigh, North Carolina, vaguely resembles a scale model of the eponymous second-world-war bomber. And the offering by Delair-Tech, based in Toulouse, France, sports the long, narrow wings of a glider to keep it aloft for long periods.

Even an endurance drone, though, may be pushed to survey a large estate in one go. For a synoptic view of their holding, therefore, some farmers turn to satellites. Planet Labs, a firm in San Francisco, provides such a service using devices called CubeSats, measuring a few centimetres across. It keeps a fleet of about 30 of these in orbit, which it refreshes as old ones die by putting new ones into space, piggybacking on commercial launches. Thanks to modern optics, even a satellite this small can be fitted with a multispectral camera, though it has a resolution per pixel of only 3.5 metres (about ten feet). That is not bad from outer space, but not nearly as good as a drone’s camera can manage.

Satellite coverage, though, has the advantage of being both broad and frequent, whereas a drone can offer only one or the other of these qualities. Planet Lab’s constellation will be able to take a picture of a given bit of the Earth’s surface at least once a week, so that areas in trouble can be identified quickly and a more detailed examination made.

The best solution is to integrate aerial and satellite coverage. That is what Mavrx, also based in San Francisco, is trying to do. Instead of drones, it has an Uber-like arrangement with about 100 light-aircraft pilots around America. Each of the firm’s contracted planes has been fitted with a multispectral camera and stands ready to make specific sorties at Mavrx’s request. Mavrx’s cameras have a resolution of 20cm a pixel, meaning they can pretty much take in individual plants.

The firm has also outsourced its satellite photography. Its raw material is drawn from Landsat and other public satellite programmes. It also has access to these programmes’ libraries, some of which go back 30 years. It can thus check the performance of a particular field over decades, calculate how much biomass that field has supported from year to year and correlate this with records of the field’s yields in those years, showing how productive the plants there have been. Then, knowing the field’s biomass in the current season, it can predict what the yield will be. Mavrx’s method can be scaled up to cover entire regions and even countries, forecasting the size of the harvests before they are gathered. That is powerful financial and political information.

A truly automated, factory-like farm, however, would have to cut people out of the loop altogether. That means introducing robots on the ground as well as in the air, and there are plenty of hopeful agricultural-robot makers trying to do so.

At the University of Sydney, the Australian Centre for Field Robotics has developed RIPPA (Robot for Intelligent Perception and Precision Application), a four-wheeled, solar-powered device that identifies weeds in fields of vegetables and zaps them individually. At the moment it does this with precise, and precisely aimed, doses of herbicide. But it, or something similar, could instead use a beam of microwaves, or even a laser. That would allow the crops concerned to be recognised as “organic” by customers who disapprove of chemical treatments.

For the less fussy, Rowbot Systems of Minneapolis is developing a bot that can travel between rows of partly grown maize plants, allowing it to apply supplementary side dressings of fertiliser to the plants without crushing them. Indeed, it might be possible in future to match the dose to the plant in farms where individual plants’ needs have been assessed by airborne multispectral cameras.

Robots are also of interest to growers of fruit and vegetables that are currently picked by hand. Fruit-picking is a time-consuming business which, even though the pickers are not well rewarded, would be a lot faster and cheaper if it were automated. And robot pickers are starting to appear.

The SW6010, made by AGROBOT, a Spanish firm, uses a camera to recognise strawberries and work out which are ripe for the plucking. Those that are have their stems severed by blades and are caught in baskets before being passed on by a conveyor belt for packing by a human operator sitting on the robot. In the Netherlands, researchers at Wageningen University are working on a robot harvester for larger produce such as peppers.

All these devices, and others like them, still exude a whiff of the Heath Robinson. But robotics is developing rapidly, and the control systems needed to run such machines are getting better and cheaper by the day. Some think that in a decade or so many farms in rich countries will be largely robot-operated.

Yet others wonder just how far farmers will let their farms be robotised. Self-guiding agricultural machinery such as that sold by John Deere is all but robotic already. It is like an airliner, in which the pilot usually has little to do between landing and take-off because computers do the work for him. Yet Deere has no plans to hand over complete control to the cloud, because that is not what its customers want. 

Tunnel vision

If total control still seems some way off in outdoor farming, it is already close for crops grown in an entirely artificial environment. In a warren of tunnels beneath Clapham, in south London, Growing Underground is doing exactly what its name suggests. It is rearing around 20 types of salad plants, intended for sale to the chefs and sandwich shops of the city, in subterranean voids that began life as second-world-war bomb shelters.

In many ways, Growing Underground’s farm resembles any other indoor hydroponic operation. But there is one big difference. A conventional greenhouse, with its glass or polycarbonate walls, is designed to admit as much sunlight as possible. Growing Underground specifically excludes it. Instead, illumination is provided by light-emitting diodes (LEDs). These, in the minimalist spirit of hydroponics, have had their spectra precisely tuned so that the light they emit is optimal for the plants’ photosynthesis.

As you would expect, sensors watch everything—temperature, humidity, illumination—and send the data directly to Cambridge University’s engineering department where they are crunched, along with information on the plants’ growth, to work out the best regimes for future crops.

For now Steven Dring, Growing Underground’s boss, is confining output to herbs and vegetables such as small lettuces and samphire that can be brought to harvestable size quickly. He has reduced the cycle for coriander from 21 to 14 days. But tests suggest that the system also works for other, chunkier crops. Carrots and radishes have already been successfully grown this way, though they may not command a sufficient premium to make their underground cultivation worthwhile. But pak choi, a Chinese vegetable popular with trendy urbanites who live in inner-London suburbs like Clapham, is also amenable. At the moment growing it takes five weeks from start to finish. Get that down to three, which Mr Dring thinks he can, and it would be profitable. 

The firms that make the LEDs could also be on to a good thing. Mr Dring’s come from Valoya, a Finnish firm. In Sweden, Heliospectra is in the same business. Philips, a Dutch electrical giant, has also joined in. In conventional greenhouses such lights are used to supplement the sun, but increasingly they do duty in windowless operations like Mr Dring’s. Though unlike sunlight they do not come free, they are so efficient and long-lasting that their spectral advantages seem clinching (see chart).

This kind of farming does not have to take place underground. Operations like Mr Dring’s are cropping up in buildings on the surface as well. Old meatpacking plants, factories and warehouses the world over are being turned into “vertical farms”. Though they are never going to fill the whole world’s bellies, they are more than a fad. Rather, they are a modern version of the market gardens that once flourished on the edge of cities —in places just like Clapham—before the land they occupied was swallowed by urban sprawl. And with their precise control of inputs, and thus outputs (see Brain scan, below), they also represent the ultimate in what farming could become.

Brain scan: Caleb Harper

 

PLANT breeders are understandably excited about manipulating botanical genomics (see next page). But it is a crop’s phenotype—its physical instantiation—that people actually eat, and this is the product of both genes and environment.

Optimising phenotypes by manipulating the environment is the task Caleb Harper has set himself. Dr Harper is the founder of the Open Agriculture Initiative (OAI) at the Massachusetts Institute of Technology’s Media Lab. At first sight, that seems odd. The Media Lab is an information-technology laboratory, best known for having helped develop things like electronic paper, wireless networks and even modern karaoke machines. It is very much about bits and bytes, and not much hitherto about proteins and lipids.

However, environmental information is still information. It informs how a plant grows, which is what interests Dr Harper. As he once put it, “people say they like peppers from Mexico. What they actually like is peppers grown in the conditions that prevail in Mexico.” He reckons that if you can replicate the conditions in which a botanical product grew, you can replicate that product. But this means you have to understand those conditions properly in the first place.

To help with this, he and his colleagues at the OAI have developed what they call the Personal Food Computer: a standardised tabletop device that can control illumination, carbon-dioxide levels, humidity, air temperature, root-zone temperature, and the acidity and dissolved-oxygen content of water delivered to the roots, as well as its nutrient content and any other aspect of its chemistry.

Plant phenotypes are monitored during growth by web cameras linked to software that detects leaf edges and colour differences and by sensors that can detect areas of active photosynthesis. After harvesting they are examined by lidar (the optical equivalent of radar) to record their shape in detail, and by gas chromatography/mass spectroscopy to understand their chemical composition.

The idea is that Personal Food Computers can be built by anyone who chooses to, and form part of an “open science” network that gathers data on growing conditions and works out those conditions’ phenotypic effects. Of particular interest are matters such as flavour and astringency that are governed by chemicals called secondary metabolites. These are often parts of plant-defence mechanisms, so in one experiment the computers are looking at the effect of adding crushed arthropod exoskeletons to the water supply, which may mimic attack by insects or mites. The hope is that this will change flavours in controllable ways.

Though Dr Harper is from a rural background, his career before the OAI was conventionally Media Lab-like. In particular, he designed environmental-control systems for data centres and operating theatres—keeping heat, humidity and so on within the tight limits needed for optimal function. But the jump from controlling those environments to controlling miniature farms was not enormous.

Some three dozen Personal Food Computers already exist and about 100 more are under construction the world over. This geographical dispersion is important. Dr Harper’s goal, as his view on Mexican peppers suggests, is to decouple climate from geography by building a “catalogue of climates”. That would allow indoor urban farms to be programmed to imitate whatever climate was required in order to turn out crops for instant local consumption. This would certainly appeal to those who worry about “food miles”—the cost in terms of carbon dioxide of shipping edible items around the world. How it will go down with farmers in places whose climates are being imitated in rich-country cities remains to be seen.

The founder of the Open Agriculture Initiative at MIT’s Media Lab is building a “catalogue of climates” to help plants grow better
 

Crops of the future: Tinker and tailor 

Farms need better products. Genomic understanding will provide them

C4 SOUNDS like the name of a failed electric car from the 1970s. In fact, it is one of the most crucial concepts in plant molecular biology. Plants have inherited their photosynthetic abilities from bacteria that took up symbiotic residence in the cells of their ancestors about a billion years ago. Those bacteria’s descendants, called chloroplasts, sit inside cells absorbing sunlight and using its energy to split water into hydrogen and oxygen. The hydrogen then combines with carbon dioxide to form small intermediate molecules, which are subsequently assembled into sugars. This form of photosynthesis is known as C3, because these intermediates contain three carbon atoms. Since the arrival of chloroplasts, though, evolution has discovered another way to photosynthesise, using a four-carbon intermediate. C4 photosynthesis is often more efficient than the C3 sort, especially in tropical climes. Several important crops that started in the tropics use it, notably maize, millet, sorghum and sugar cane.

C4 photosynthesis is so useful that it has evolved on at least 60 separate occasions. Unfortunately, none of these involved the ancestors of rice, the second most important crop on Earth, after wheat. Yet rice, pre-eminently a tropical plant, would produce yields around 50% bigger than at present if it took the C4 route. At the International Rice Research Institute in Los Banos, outside Manila, researchers are trying to show it how.

The C4 Rice Project, co-ordinated by Paul Quick, is a global endeavour, also involving biologists at 18 other laboratories in Asia, Australia, Europe and North America. Their task involves adding five alien enzymes to rice, to give it an extra biochemical pathway, and then reorganising some of the cells in the plant’s leaves to create special compartments in which carbon dioxide can be concentrated in ways the standard C3 mechanism does not require. Both of these things have frequently happened naturally in other plants, which suggests that doing them artificially is not out of the question. The team has already created strains of rice which contain genes plucked from maize plants for the extra enzymes, and are now tweaking them to improve their efficacy. The harder part, which may take another decade, will be finding out what genetic changes are needed to bring about the compartmentalisation.

The C4 Rice Project thus aims to break through the yield plateaus and return the world to the sort of growth rates seen in the heady days of the Green Revolution. Other groups, similarly motivated, are working on making many types of crops resistant to drought, heat, cold and salt; on inducing greater immunity to infection and infestation; on improving nutritional value; on making more efficient use of resources such as water and phosphorous; and even on giving to plants that do not have it the ability to fix nitrogen, an essential ingredient of proteins, directly from the air instead of absorbing it in the form of nitrates. Such innovations should be a bonanza. Unfortunately, for reasons both technical and social, they have so far not been. But that should soon change.

The early days of genetically engineered crops saw two huge successes and one spectacular failure. The successes were the transfer into a range of plants, particularly maize, soyabeans and cotton, of two types of gene. Both came from bacteria. One protected its host from the attentions of pesky insect larvae. The other protected it from specific herbicides, meaning those herbicides could be used more effectively to keep fields free from weeds. Both are beloved of farmers.

The spectacular failure is that neither is beloved of consumers. Some are indifferent to them; many actively hostile. Even though over decades there has been no evidence that eating genetically modified crops is harmful to health, and little that they harm the environment, they have been treated as pariahs.

Since people do not eat cotton, and soyabeans and maize are used mainly as animal fodder, the anti-GM lobby’s impact on those crops has been muted. But the idea of extending either the range of crops modified or the range of modifications available has (with a few exceptions) been thought commercially too risky to try. Moreover, transgenics, as the technique of moving genes from one species to another is called, is haphazard. Where the moved gene will end up is hard to control. That matters, for genes work better in some places than others.

Spell it for me

The search has therefore been on for a better way than transgenics of doing things. And one is now emerging that, its supporters hope, may kill both the technical and the social birds with a single stone. Genome editing, as this approach is known, tweaks existing DNA in situ by adding, subtracting or substituting a piece that may be as small as a single genetic “letter” (or nucleotide). That not only makes the technique precise, it also resembles the natural process of mutation, which is the basis of the variety all conventional plant-breeding relies on. That may raise fewer objections among consumers, and also holds out the hope that regulators will treat it differently from transgenics.

After a couple of false starts, most researchers agree that a technique called CRISPR/Cas9, derived from a way that bacteria chop up the genes of invading viruses, is the one that will make editing crop genomes a realistic prospect. Transgenic technology has steered clear of wheat, which is eaten mainly by people. But DuPont’s seed division, Pioneer, is already trying to use CRISPR/Cas9 to stop wheat from self-pollinating, in order to make the development of hybrids easier. Similarly, researchers at the Chinese Academy of Sciences are using it to try to develop wheat plants that are resistant to powdery mildew, a serious hazard.

Not all current attempts at agricultural genome editing use CRISPR/Cas9. Cibus, in San Diego, for example, employs a proprietary technique it calls the Rapid Trait Development System (RTDS). This co-opts a cell’s natural DNA repair mechanism to make single-nucleotide changes to genomes. RTDS has already created one commercial product, a form of rape resistant to a class of herbicides that conventional transgenics cannot protect against. But at the moment CRISPR/Cas9 seems to be sweeping most things before it—and even if it stumbles for some reason, other bacterial antiviral mechanisms might step in.

Advertisement

Whether consumers will accept genome editing remains to be seen. No one, however, is likely to object to a second rapidly developing method of crop improvement: a souped-up breeding technique called genomic selection.

Genomic selection is a superior version of marker-assisted selection, a process which has itself been replacing conventional crop-breeding techniques. Both genomic selection and markerassisted selection rely on recognising pieces of DNA called markers found in or near places called quantitative trait loci (QTLs). A QTL is part of a genome that has, because of a gene or genes within it, a measurable, predictable effect on a phenotype. If the marker is present, then so is the QTL. By extension, a plant with the marker should show the QTL’s phenotypic effect.

The difference between conventional marker-assisted selection and the genomic version is that the former relied on a few hundred markers (such as places where the DNA stuttered and repeated itself) that could be picked up by the technology then available. Now, improved detection methods mean single-nucleotide polymorphisms, or SNPs (pronounced “snips”), can be used as markers. A SNP is a place where a single genetic letter varies in an otherwise unchanging part of the genome, and there are thousands of them.

Add in the enormous amounts of computing power available to link SNPs with QTLs—and, indeed, to analyse the interactions between QTLs themselves—and the upshot is a system that can tell a breeder which individual plants are worth raising to maturity, and which should then be crossed with each other to come up with the best results.

Crop strains created this way are already coming to market. AQUAmax and Artesian are drought-tolerant strains of maize developed, respectively, by DuPont and Syngenta. These two, intriguingly, are competitors with another drought-tolerant maize strain, DroughtGuard, developed by Monsanto using the transgenic approach.

Genomic selection also offers opportunities for the scientific improvement of crops that seed companies usually neglect. The NextGen Cassava Project, a pan-African group, plans to zap susceptibility to cassava mosaic virus this way and then systematically to improve the yield and nutritional properties of the crop. The project’s researchers have identified 40,000 cassava SNPs, and have now gone through three generations of genomic selection using them. Besides making cassava resistant to the virus, they also hope to double yields and to increase the proportion of starch (and thus the nutritional value) of the resulting strains. If modern techniques can similarly be brought to bear on other unimproved crops of little interest to the big seed companies, such as millet and yams, the yield-bonuses could be enormous.

For the longer term, some researchers have more radical ambitions. A manifesto published last year by Donald Ort, of the United States Department of Agriculture’s Agricultural Research Service, and his colleagues proposes not merely recapitulating evolution but actually redesigning the photosynthetic process in ways evolution has not yet discovered. Dr Ort suggests tweaking chlorophyll molecules in order to capture a wider range of frequencies and deploy the resulting energy more efficiently. He is also looking at improving the way plants absorb carbon dioxide. The result, he hopes, will be faster-growing, higher-yielding crops.

Such ideas are controversial and could take decades to come to fruition. But they are not fantastic. A combination of transgenics (importing new forms of chlorophyll from photosynthetic bacteria), genome editing (to supercharge existing plant enzymes) and genomic selection (to optimise the resulting mixture) might well be able to achieve them.

Those who see this as an unnatural, perhaps even monstrous approach to crop improvement should recall that it is precisely what happened when the ancestors of modern plants themselves came into existence, through the combination of a bacterium and its host and their subsequent mutual adjustment to live in symbiosis. It was this evolutionary leap which greened the Earth in the first place. That something similar might re-green it is at least worth considering.

Fish farming: Catch of the day 

Farming marine fish inland will relieve pressure on the oceans

IN THE basement of a building on a wharf in Baltimore’s inner harbour, a group of aquaculturists at the Institute of Marine and Environmental Technology is trying to create an artificial ecosystem. Yonathan Zohar and his colleagues hope to liberate the raising of ocean fish from the ocean itself so that fish farms can be built inland. Fresh fish, served the day it comes out of the brine (even if the brine in question is a judicious mixture of tap water and salts), would thus become accessible to millions of landlubbers who must now have their fish shipped in from afar, deep-frozen. Equally important, marine-fish farmers would no longer have to find suitable coastal sites for penning stock while it grows to marketable size, exposing the crowded animals to disease and polluting the marine environment.

People have raised freshwater fish in ponds since time immemorial, but farming species such as salmon that live mainly in saltwater dates back only a few decades, as does the parallel transformation of freshwater aquaculture to operate on an industrial scale. Now fish farming is booming. As the chart on the next page shows, human consumption of farmed fish has overtaken that of beef. Indeed, one way of supplying mankind with enough animal protein in future may be through aquaculture. To keep the boom going, though, technologists like Dr Zohar must become ever more inventive.

His ecosystem, which is about to undergo commercial trials, constantly recycles the same supply of brine, purified by three sets of bacteria. One set turns ammonia excreted by the fish into nitrate ions. A second converts these ions into nitrogen (a harmless gas that makes up 78% of the air) and water. A third, working on the solid waste filtered from the water, transforms it into methane, which—via a special generator—provides part of the power that keeps the whole operation running. The upshot is a closed system that can be set up anywhere, generates no pollution and can be kept disease-free. It is also escape-proof. That means old-world species such as sea bream and sea bass, which cannot now be grown in America because they might get out and breed in the wild, could be delivered fresh to the table anywhere.

Besides transforming the design of fish farms, Dr Zohar is also working on extending the range of species that they can grow. He has spent decades studying the hormone system that triggers spawning and can now stimulate it on demand. He has also examined the needs of hatchling fry, often completely different from those of adult fish, that must be met if they are to thrive. At the moment he is trying to do this for one of the most desirable species of all, the bluefin tuna. If he succeeds, and thus provides an alternative to the plummeting wild populations of this animal, sushi lovers around the world will be for ever in his debt.

Gone fishin’

Fish farmers used to dream of fitting their charges with transgenes to make them grow more quickly. Indeed, over the past couple of decades researchers have treated more than 35 fish species in this way. They have often been spectacularly successful. Only one firm, though, has persisted to the point of regulatory approval. AquaBounty’s transgenic Atlantic salmon, now cleared in both America and Canada, has the desirable property of rapid growth. Its transgene, taken from a chinook salmon, causes it to put on weight all year round, not just in spring and summer. That halves the time the fish will take to reach marketable size. Whether people will be willing to eat the result, though, is an experiment in its own right—one that all those other researchers, only too aware of widespread public rejection of transgenic crops, have been unwilling to conduct.

That may be wise. There is so much natural variation in wild fish that conventional selective breeding can make a big difference without any high-tech intervention. Back in 2007 a report by researchers at Akvaforsk, now part of the Norwegian Institute of Food, Fisheries and Aquaculture Research (NOFIMA), showed that three decades of selective breeding by the country’s salmon farmers had resulted in fish which grew twice as fast as their wild progenitors. Admittedly starting from a lower base, those farmers had done what AquaBounty has achieved, but without the aid of a transgene.

If conventional selection can yield such improvements, it is tempting not to bother with anything more complicated. Tempting, but wrong. For, as understanding of piscine DNA improves, the sort of genomic selection being applied to crops can also be applied to fish.


Researchers at SalmoBreed of Bergen, in Norway, have employed it not to create bigger, faster-growing fish but to attack two of fish farming’s banes—infestation and infection. By tracking SNPs (single-nucleotide polymorphisms, a variation of a single genetic letter in a genome used as a marker) they have produced varieties of salmon resistant to sea lice and also to pancreas disease, a viral illness. They are now looking into a third problem, amoebic gill disease. In Japan, similar work has led to the development of flounders resistant to viral lymphocystis, trout immune to “cold-water” disease, a bacterial infection, and amberjack that evade the attentions of a group of parasitic worms called the monogenea.

Altering nature, then, is crucial to the success of fish farming. But nurture can also give a helping hand, for example by optimising what is fed to the animals. As with any product, one key to success is to get costs down. And here, environmental and commercial considerations coincide.

A common complaint by green types is that fish farming does not relieve as much pressure on the oceans as it appears to, because a lot of the feed it uses is made of fish meal. That simply transfers fishing pressure from species eaten by people directly to those that get turned into such meal. But fish meal is expensive, so researchers are trying to reduce the amount being used by substituting plant matter, such as soya. In this they have been successful. According to a paper published last year by researchers at NOFIMA, 90% of salmon feed used in Norway in 1990 was fish meal. In 2013 the comparable figure was 30%. Indeed, a report published in 2014 by the European Parliament found that fish-meal consumption in aquaculture peaked in 2005.

It’s a gas

Feeding carnivores like salmon on plants is one way to reduce both costs and environmental harm. Another, which at first sight seems exotic, is to make fish food out of natural gas. This is the proposed business of Calysta, a Californian firm. Calysta feeds the gas—or, rather, its principal component, methane—to bacteria called methanotrophs. These metabolise the methane, extract energy from it and use the atoms thus liberated, along with oxygen from water and nitrogen from the air, to build their bodies. Calysta then turns these bodies into protein pellets that are sold as fish food, a process that puts no strain at all on either sea or field.

Even conventional fish foods, though, are low-strain compared with feed for farm animals. Because fish are cold-blooded, they do not have to eat to stay warm. They thus convert more of their food into body mass. For conservationists, and for those who worry whether there will be enough food in future to feed the growing human population, that makes fish a particularly attractive form of animal protein.

Nevertheless, demand for the legged and winged sort is growing too. Novel technologies are therefore being applied to animal husbandry as well. And some imaginative researchers are even trying to grow meat and other animal products in factories, cutting the animals out of the loop altogether.

Animal husbandry: Stock answers 

Technology can improve not only productivity but animal welfare too

IF THE future of farming is to be more factory-like, some might argue that the treatment of stock animals such as chickens and pigs has led the way. Those are not, though, happy precedents. Crop plants, unsentient as they are, cause no welfare qualms in those who worry about other aspects of modern farming. Even fish, as long as they are kept healthy, rarely raise the ire of protesters. Birds and mammals are different. There are moral limits to how they can be treated. They are also individually valuable in a way that crop plants and fish are not. For both these reasons, they are worth monitoring one at a time.

Cattle, in particular, are getting their own private sensors. Devices that sit inside an animal’s rumen, measuring stomach acidity and looking for digestive problems, have been available for several years. They have now been joined by movement detectors such as that developed by Smartbell, a small firm in Cambridge, England. This sensor hangs around a cow’s neck, recording its wearer’s movement and transmitting that information to the cloud. An animal’s general activity level is a good indication of its fitness, so the system can give early warning of any trouble. In particular, it immediately shows when its wearer is going lame—a problem that about a fifth of British cattle suffer at some point in their lives—even before an observant farmer might notice anything wrong. If picked up early, lameness is easily treated. If permitted to linger, it often means the animal has to be destroyed.

Movement detectors can also show if a cow is ready for insemination. When she is in oestrus, her pattern of movement changes, and the detector will pick this up and alert her owner. Good breeding is crucial to animal husbandry, and marker-assisted genomic selection will ensure that the semen used for such insemination continues to yield better and better offspring. What is less clear—and is actively debated—is whether genome editing has a role to play here. Transgenics has given an even wider berth to terrestrial animals than it has to fish, and for the same reason: wary consumers. Some people hope, though, that this wariness will not apply to animals whose DNA has merely been tweaked, rather than imported from another species, especially if the edits in question will improve animal welfare as well as farmers’ profits.

Following this line of thinking, Recombinetics, a firm in St Paul, Minnesota, is trying to use genome editing of the sort now being employed on crops to create a strain of hornless Holstein cattle. Holsteins are a popular breed for milking, but their horns make them dangerous to work with, so they are normally dehorned as calves, which is messy, and painful for the animal. Scott Fahrenkrug, Recombinetics’ founder, therefore had the idea of introducing into Holsteins a DNA sequence that makes certain beef cattle hornless. This involved deleting a sequence of ten nucleotides and replacing it with 212 others.

Bruce Whitelaw at the Roslin Institute, in Scotland, has similarly edited resistance to African swine fever into pigs, by altering a gene that helps regulate immune responses to this illness to make it resemble the version found in warthogs. These wild African pigs have co-evolved with the virus and are thus less susceptible to it than are non-African domesticated animals. Randall Prather at the University of Missouri has similarly created pigs that cannot catch porcine reproductive and respiratory syndrome, an illness that costs American farmers alone more than $600m a year. And at the International Livestock Research Institute in Nairobi, Steve Kemp and his colleagues are considering editing resistance to sleeping sickness, a huge killer of livestock, into African cattle. All this would make the animals healthier and hence happier as well.

Not all such work is welfare-oriented, though. Dr Fahrenkrug has also been working on a famous mutation that increases muscle mass. This mutation, in the gene for a protein called myostatin, is found naturally in Belgian Blue cattle. Myostatin inhibits the development of muscle cells. The Belgian-Blue mutation disrupts myostatin’s structure, and thus function. Hence the animals’ oversize muscles. Two years ago, in collaboration with researchers at Texas A&M University, Dr Fahrenkrug edited the myostatin gene of a member of another breed of cattle to do likewise.

Where’s the beef?

There may, though, be an even better way to grow muscle, the animal tissue most wanted by consumers, than on animals themselves. At least two groups of researchers think it can be manufactured directly. In 2013 Mark Post of Maastricht University, in the Netherlands, unveiled the first hamburger made from muscle cells grown in laboratory cultures. In February this year a Californian firm called Memphis Meats followed suit with the first meatball.

Dr Post’s original hamburger, which weighed 140 grams, was assembled from strips of muscle cells grown in Petri dishes. Including all the set-up costs, it was said to have cost 250,000 ($350,000), or $2.5m a kilogram. Scaling up the process will bring that figure down a lot. This means growing the cells in reactor vessels filled with nutrient broth. But, because such cells are supposed to be parts of bodies, they cannot simply float around in the broth in the way that, for example, yeast cells used in biotechnology can. To thrive, they must be attached to something, so the idea is to grow them on small spheres floating in the vessels. Fat cells, which add juiciness to meat, would be cultured separately.

Do this successfully, Dr Post reckons, and the cost would fall to $65 a kilogram. Add in technological improvements already under way, which will increase the density of muscle cells that can be grown in a reactor, and he hopes that Mosa Meat, the firm he has founded to exploit his work commercially, will have hamburger mince ready for sale (albeit at the pricey end of the market) in five years’ time. 

Meanwhile researchers at Clara Foods, in San Francisco, are developing synthetic egg white, using transgenic yeast to secrete the required proteins. Indeed, they hope to improve on natural egg white by tweaking the protein mix to make it easier to whip into meringues, for example. They also hope their synthetic white will be acceptable to people who do not currently eat eggs, including vegans and some vegetarians.

Towards 2050: Vorsprung durch Technik 

Technology will transform farmers’ lives in both the rich and the poor world

ONE of the greatest unsung triumphs of human progress is that most people are no longer working on the land. That is not to demean farming. Rather, it is to praise the monumental productivity growth in the industry, achieved almost entirely by the application of technology in the form of farm machinery, fertilisers and other agrochemicals, along with scientifically improved crops and livestock. In 1900 around 41% of America’s labour force worked on a farm; now the proportion is below 2%. The effect is less marked in poorer countries, but the direction of travel is the same. The share of city-dwellers in the world’s total population reached 50% in 2007 and is still rising relentlessly, yet the shrinking proportion of people living in the countryside is still able to feed the urban majority.

No crystal ball can predict whether that will continue, but on past form it seems perfectly plausible that by 2050 the planet will grow 70% more food than it did in 2009, as the Food and Agriculture Organisation (FAO) says it needs to. Even though some crops in some parts of the world have reached a productivity plateau, cereal production increased by 11% in the six years after the FAO made that prediction. The Malthusian fear that population growth will outstrip food supply, now 218 years old, has not yet come true.

Yet just as Thomas Malthus has his modern-day apologists, so does his mythical contemporary, Ned Ludd. Neo-Luddism is an ever-present threat that can certainly slow down the development of new technologies—as has indeed happened with transgenics. But while it is fine for the well-fed to be prissy about not eating food containing genetically modified ingredients, their fears have cast a shadow over the development of transgenic crops that might help those whose bellies are not so full. That is unconscionable. With luck, the new generation of genome-edited plants, and maybe even animals, will not provoke such a reaction.

Regardless of whether it does, though, some other trends seem near-certain to continue into the future. Precision agriculture will spread from its North American heartland to become routine in Europe and those parts of South America, such as Brazil, where large arable farms predominate. And someone, perhaps in China, will work out how to apply to rice the sort of precision techniques now applied to soyabeans, maize and other crops.

The technological rationale for precision suggests farms should continue to consolidate, though in an industry in which sentiment and family continuity have always played a big part that purely economic analysis might suggest is irrational, this may not happen as fast as it otherwise would. Still, regardless of the speed at which they arrive, these large holdings will come more and more to resemble manufacturing operations, wringing every last ounce of efficiency out of land and machinery.

Such large-scale farms will probably continue to be served by large-scale corporations that provide seeds, stock, machines and management plans. But, in the case of the management plans, there is an opening for new firms with better ideas to nip in and steal at least part of the market.

Other openings for entrepreneurs are available, too. Both inland fish farming and urban vertical farming—though niche operations compared with Midwestern soyabean cultivation or Scottish sea-loch salmon farms—are waves of the future in the service of gustatorially sophisticated urbanites. And in these businesses, the idea of farm as factory is brought to its logical conclusion.

It is in the poorer parts of the world, though, that the battle for full bellies will be won or lost; and in Africa, in particular, the scope for change is both enormous and unpredictable. Though the problems of African farming are by no means purely technological—better roads, better education and better governments would all help a great deal—technology nevertheless has a big part to play. Organisations such as the NextGen Cassava Project, which apply the latest breeding techniques to reduce the susceptibility of crops to disease and increase their yield and nutritional value, offer Africans an opportunity to leap into the future in the way they did with telephony, bypassing fixed-line networks and moving straight to mobiles. Crops could similarly jump from 18th- to 21st-century levels of potential in a matter of years, even if converting that potential into productivity still requires the developments listed earlier.

Looking further into the future, the picture is hazier. Large-scale genetic engineering of the sort needed to create C4 rice, or nitrogen-fixing wheat, or enhanced photosynthetic pathways, will certainly cause qualms, and maybe not just among the neo-Luddites. And they may not be needed. It is a general technological truth that there are more ideas than applications, and perfectly decent ones fall by the wayside because others have got there first. But it is good to know that the big ideas are there, available to be drawn on in case other yield plateaus threaten the required rise in the food supply. It means that the people of 2050, whether they live in Los Angeles, Lucknow or Lusaka, will at least be able to face whatever other problems befall them on a full stomach.

Read more from the print edition »

Autoria e outros dados (tags, etc)

Os preços e os subsídios agrícolas

por papinto, em 02.11.14

ARMANDO SEVINATE PINTO Público 02/11/2014 - 10:58

 

A viabilidade da actividade agrícola e a subsistência das famílias que trabalham no campo dependem de forma muito significativa dos preços e dos subsídios.

 

Os preços e os subsídios agrícolas sempre estiveram, e continuarão a estar, no centro das preocupações dos agricultores. É natural que assim seja. Deles depende a viabilidade das suas actividades e, quase sempre, os seus meios de subsistência e das suas famílias.

 

Como deles também depende a base do custo da alimentação e, por isso, o rendimento dos consumidores, é fácil depreender-se que se trata de um tema sob discussão pública permanente, com base em interesses antagónicos e em teorias divididas.

O caso português, antes e depois da adesão à CEE, é dos mais singulares dentro da União.

Quando Portugal pediu a adesão à CEE, em 1977, a maioria dos nossos preços agrícolas eram inferiores aos preços médios na Comunidade e os subsídios existentes eram, com algumas excepções, maioritariamente dirigidos aos consumidores, através do chamado “cabaz de compras”*.

Nove anos depois, quando aderimos, em 1986, os preços agrícolas em Portugal eram, quase todos, superiores, às vezes até muito superiores, aos da Comunidade. Não só porque se desmobilizaram alguns subsídios, mas também, a meu ver, principalmente, porque nessa altura a inflação interna subiu a níveis hoje impensáveis, superiores a 27%.

A entrada na CEE foi muito dolorosa para alguns sectores agrícolas, não só porque os seus preços foram progressivamente harmonizados com os preços europeus (reduzidos por tranches em função dos diferentes sistemas de transição), mas também porque a nossa entrada praticamente coincidiu com o início da descida dos preços europeus, visando a sua harmonização com os preços mundiais.

Os preços agrícolas em Portugal reduziram-se brutalmente em alguns sectores mais envolvidos com o sistema de preços da PAC (cereais, oleaginosas, carne de bovino e ovino…), o mesmo não tendo acontecido em outros sectores em que os apoios sempre foram menos dependentes do sistema de preços (frutas e legumes, por exemplo).

De facto, quando aderimos, todo o sistema de apoio ao rendimento da Politica Agrícola Comum (PAC) consistia numa protecção aduaneira do mercado interno, relativamente ao mercado mundial, através de taxas variáveis, que tinham por efeito a formação de preços bastante elevados aos agricultores comunitários. Dizia-se então que os subsídios estavam implícitos nos preços.

Este sistema durou ainda aproximadamente cinco anos, uma vez que, só em 1992, se deu a primeira reforma da PAC. Com essa reforma, os preços europeus iriam progressivamente reduzir-se, ainda que de forma significativa.

Em compensação, apenas parcial, foi instituído um sistema de ajudas directas aos agricultores, calculadas com base nas perdas teóricas de cada um em função das suas produtividades e da queda dos respectivos preços.

Durante cerca de uma década, os preços europeus aproximaram-se, ou igualaram, os do mercado mundial e as ajudas aos agricultores mantiveram-se “ligadas” à produção, isto é, eram pagas em função da quantidade produzida, dos hectares utilizados, ou do número de animais em produção.

Até que, em 2003, com o apoio da esquerda europeia, de uma larga parte da opinião pública e de muitos académicos europeus de renome, a maioria das ajudas ao rendimento foram “desligadas” da produção, apesar de serem calculadas com base em registos históricos, de cada país e de cada agricultor.

Finalmente, uma década depois, em 2014, com a presente reforma da PAC, já aprovada mas ainda dependente de algumas decisões internas, manteve-se e acentuou-se o sistema da reforma de 2003, agora submetido a um processo progressivo de harmonização dos montantes das ajudas (actualmente diferentes para cada sector, agricultor e Estado-membro), que será total no plano nacional mas ainda parcial no plano comunitário.

Entretanto, os preços agrícolas já se formam livremente no mercado interno, com fortíssima influência dos preços mundiais (conceito, a meu ver, significativamente subjectivo, quanto à sua formação e significado) e associados às suas flutuações.

O mesmo acontece com os preços/custos dos factores de produção agrícola, ainda que, por variadíssimas razões, também nem sempre lógicas e justificadas, se mantenham diferenças muito importantes, dentro e fora da União Europeia, tal como também se verifica com os custos do trabalho.

O que penso eu de toda esta evolução? Penso que o resultado está à vista e não é muito animador, uma vez que os preços agrícolas nunca foram tão incertos (voláteis, como agora se diz).

Nunca escondi o meu apego ao regime europeu original e inúmeras vezes o tornei público, ainda que sem a mínima esperança de que este fosse recuperado. Era notável o seu efeito estabilizador, retirando aos agricultores algum risco da sua actividade que, pela sua própria natureza, já tem riscos que chegam e sobram.

Fui contra a linha de reformas iniciada em 1992, sendo nessa altura director na Comissão Europeia, quer pela perda de estabilidade do sistema de preços europeu, quer porque me pareceu que, essa reforma, seria a preparação da supressão total dos subsídios à agricultura.

Fui contra o “desligamento” das ajudas na reforma de 2003, exactamente quando era ministro da Agricultura. Bati-me contra essa solução e votei contra a reforma por falta de contrapartidas, mas estive sempre pouco acompanhado. Agora já não seria assim porque as evidências têm muita força.

Na minha opinião, o passo final, o da supressão das ajudas, só não foi ainda dado porque a crise alimentar de 2008/9, veio alterar muitos dos argumentos usados para a justificar essa opção. As opiniões públicas, e os políticos que as interpretam, deram conta do enorme risco que isso acarretaria.

Finalmente, embora subsistam alguns importantíssimos apoios aos agricultores, o mercado liberalizado está aí e, com ele, a volatilidade dos preços. Os preços flutuam como nunca antes tinha acontecido e o mercado mundial exibe as suas imperfeições. O nível de risco é cada vez maior, numa actividade, que pela sua própria natureza, já está rodeada de riscos.

A PAC continua a ser indispensável. Tem defeitos, mas muito menores do que os seus detractores querem fazer crer. O grande problema não é da PAC, mas da falta dela em matéria de preços e da sua substituição pelo mercado mundial de cujo bom funcionamento sempre duvidei. De facto, as suas variações não param de nos surpreender. Nas últimas duas campanhas, por exemplo, o preço do milho reduziu-se quase para metade

Finalmente, para que se perceba melhor a necessidade dos subsídios, de que tanta gente discorda, dou apenas mais um exemplo que deixo à reflexão dos leitores. Há 28 anos, quando entrámos na CEE, o preço do trigo aos produtores portugueses era de 55 Escudos por kg. Actualmente, o preço pago aos produtores anda em torno de 15 cêntimos por kg (30 escudos)! Se em vez de preços correntes, comparássemos preços reais, então teríamos que multiplicar os 55 Esc. por 3,86 (tendo em conta a evolução do Índice de Preços Implícito no PIB, desde 1986), o que daria mais de 212 Esc., isto é, sete vezes mais do que o preço actual!

Percebe-se agora melhor a justificação dos subsídios? Espero sinceramente que sim.

 

*Sistema de fixação administrativa dos preços do pão, do leite e de muitos outros produtos e factores de produção, subsidiados através do “Fundo de Abastecimento”

Engenheiro agrónomo (ISA)

Autoria e outros dados (tags, etc)

Será fácil ser-se agricultor?

por papinto, em 22.06.14

ARMANDO SEVINATE PINTO 

 

Depois de décadas em que a sua imagem foi tudo menos positiva, a agricultura está agora na moda. Ainda bem! Esperemos que seja para durar. Os agricultores passaram de socialmente desprestigiados, a gente respeitada pelo seu esforço e pelo seu sucesso. Ser jovem agricultor passou a não ser menos do que ser jovem doutor, ou jovem engenheiro, de outras profissões.

Sob o aplauso público e o chamamento político generalizado, a agricultura sobe ao pódio, o Presidente da República dedicou-lhe um 10 de Junho e a comunicação social cobre-a de elogios.

Perante a incredibilidade, dos que disso fazem profissão, afinal a agricultura sobreviveu. Afinal exportamos milhares de milhões de euros, somos muito menos dependentes do que alguns pensavam, os nossos vinhos e azeites brilham no mundo inteiro, a nossa cortiça é prestigiada pelos artistas e pela alta tecnologia e a nossa fruta, concentrado de tomate, saladas e cavalos, levam longe o nome do nosso país.

Os agricultores mais velhos gostam, mas desconfiam. Os mais novos tentam a sorte por caminhos que, em muitos casos, estariam longe dos seus sonhos, mas que, também em muitos casos, os realizam profissional e humanamente, com experiências fascinantes, que só o mundo rural, a natureza e o prazer de produzir utilidade, podem proporcionar

Conjugaram-se várias circunstâncias favoráveis à agricultura para que isso tenha acontecido. À escala mundial, a insegurança alimentar gerada pelas crises recentes, valorizou a sobrevivência e o mundo emocionou-se com a fome, que os anos de desvario financeiro tinham feito esquecer. No nosso caso, o consumismo, desordenado e irracional, resultado do enriquecimento súbito, que agora se revela fatal, gerou importações desregradas e muitas vezes desnecessárias, em que tudo parecia ilimitado.

Ao ponto de muitas crianças julgarem que o leite, a carne, o pão, a fruta e os legumes, fossem produzidos nos supermercados.

O rural e o campo foram sinónimos de atraso, de pobreza e de passado, de que todos pareciam querer fugir, alimentados por estereótipos urbanos de felicidade aparente e efémera.

A nossa consciência colectiva acordou. Ainda que lentamente, foi compreendendo o evidente. A agricultura, de amaldiçoada, passou a fundamental para o desenvolvimento do país e para o equilíbrio do território. Em pouco tempo, passou a socialmente atractiva. Passou a assunto, ganhou estatuto e criou-se a moda.

Hoje tudo é diferente. No meio da crise que nos consome, os agricultores chegam a parecer os heróis do nosso tempo.

Mas será fácil ser-se agricultor, como parece acreditar uma grande parte da sociedade urbana? A resposta é clara e óbvia, sobretudo, se dada por aqueles e aquelas que já o são. Não, não é nada fácil ser-se agricultor e, muito menos, ser-se jovem agricultor. Não é fácil e convém que se saiba.

Começa por ser uma profissão rodeada de incertezas, cuja redução está geralmente fora do poder de quem as enfrenta. São os preços dos produtos agrícolas e os custos dos factores de produção que evoluem erraticamente, muitas vezes inexplicavelmente, e, quase sempre, em desacordo com os nossos interesses. É o tempo caprichoso que nos dá chuva quando queremos sol, e sol quando pedimos chuva; que nos dá frio e geada, que mata e queima a flor da nossa fruta e das nossas searas, ou calor que escalda as nossas uvas; são as doenças, as pragas e os incêndios que nos queimam a esperança quando menos esperamos; é a política que muda como o vento que nos destrói as estufas.

Ser agricultor é, muitas vezes, resistir. Resistir às adversidades, mais frequentes e maiores do que na maioria das outras profissões. É saber controlar as emoções, quando as culturas se perdem ou morrem os animais, depois de meses, e até anos, de trabalho e de dedicação. É saber como passar noites sem vontade de dormir, como aguentar a burocracia desesperante. Saber como, muitas vezes sem dinheiro, pagar impostos, seguros, salários, segurança social e contas de todo o tipo.

Ser agricultor hoje, é também ser profissional; ter vontade de aprender; saber biologia, zoologia, química, mecânica, economia e gestão; é saber outras línguas, informática, ler, estudar, informar-se, associar-se, viajar, ser curioso, relacionar-se, saber vender e saber comprar.

Ser agricultor é também vocação e sorte. É escolher uma profissão que dá sentido à vida, que dá prazer, liberdade e independência. Nem sempre independência financeira, mas, quase sempre independência de carácter.

Um carácter moldado com a ajuda da natureza, com a brisa fresca das manhãs com cheiro a terra, com os pôr-do-sol que suavizam a vida dura dos campos e dão gratuitamente o alento suficiente para enfrentar o difícil dia a dia dos agricultores.

Ser-se agricultor está longe de ser fácil e mais longe ainda da facilidade que os não agricultores julgam associada a esta profissão.

Os candidatos a agricultores, aqueles que respondem ao chamamento da sociedade, ou à sua intuição pessoal, devem estar conscientes da dedicação e esforço que lhe vão ser exigidos, mas também da existência da formidável energia positiva associada a uma das mais nobres, livres, úteis, gratificantes e independentes actividades humanas inseridas no processo produtivo e que tem o mérito de ser uma das poucas de que depende inteiramente a sobrevivência da nossa espécie.

Engenheiro agrónomo (ISA)

Autoria e outros dados (tags, etc)

SEVINATE PINTO | Público | 19/04/2014 - 16:30

 

A pergunta que cada vez mais se faz, na Europa e em todo o mundo, e a que ninguém ainda sabe dar resposta, é como iremos alimentar convenientemente mais dois mil milhões de seres humanos esperados para meados deste século.

Nessa altura, estima-se que o mundo venha a ter mais de nove mil milhões de habitantes. Para os alimentar, os modelos da Organização das Nações Unidas para Alimentação e Agricultura (FAO) apontam para a necessidade de se aumentar a produção mundial de alimentos em cerca de 70%. Não seremos só mais, muitos mais. Nessa altura, os padrões médios de consumo também tenderão a aumentar.

E como poderemos fazê-lo, com recursos naturais cada vez mais reduzidos e fragilizados e num contexto de alterações climáticas, de que já só se discute a sua intensidade e não a sua existência? É uma pergunta, mas também é uma preocupação, um motivo de discussão, de investigação e de estudo, que, com o passar do tempo, se vai progressivamente transformando em ansiedade.

Até agora, o que já se sabe é que, sem um ampla participação da ciência, sem um forte empenhamento colectivo na procura de soluções e sem uma profunda alteração do comportamento humano, haverá seguramente convulsões sociais repetidas, disputas, miséria e sofrimento. Sofrimento que se repartirá de forma desigual porque desigualmente também estão distribuídos os recursos naturais, a capacidade produtiva, o conhecimento e a riqueza.

Uma pequena ideia do que pode ser uma crise alimentar universal, foi-nos dada em 2008/2009. Nessa altura, uma mera oscilação negativa da oferta alimentar volatilizou os preços dos produtos agrícolas de base em todo o mundo e causou enorme agitação social e politica, sobretudo no Norte de África e no Médio Oriente.

Serão suficientes os avanços tecnológicos hoje disponíveis para produzir, mais e melhor, os alimentos de que necessitaremos? Todos os técnicos, cientistas e estudiosos, nos dizem que não. Embora todos concordem que o desenvolvimento tecnológico terá de estar presente como uma das componentes de uma eventual solução.

Como intensificar as produções sem causar a erosão dos recursos, sem atingir ainda mais o ambiente, de cuja preservação também depende a nossa vida? Esta é outra pergunta para a qual as respostas esboçadas estão ainda longe de ser convincentes. Tem ainda de ser inventada uma agricultura mais extensiva e mais produtiva, ou mais intensiva e mais compatível com a defesa do ambiente.

Já existe o conceito de “intensificação sustentável”, mas os exemplos ainda são excessivamente limitados para que se possa acreditar na sua participação decisiva na resolução do problema. No que já estamos todos de acordo é que o conceito de eficácia produtiva se tem vindo a alterar e que o modelo químico-mecânico, que, durante décadas, nos fez acreditar que correspondia ao progresso, tem vindo a mostrar os seus limites.

E o que poderemos nós fazer enquanto consumidores? Esta é talvez a pergunta para a qual haverá respostas mais promissoras e que, mais e melhor, poderão contribuir para nos afastar dos piores cenários. Não será fácil, mas, sem dúvida, será possível, modificar o comportamento dos consumidores e alterar alguns dos nossos padrões de consumo alimentar.

Na mesma altura em que cerca mil milhões de seres humanos, um pouco por todo o mundo, passam fome e sofrem de subnutrição, há cerca de mil e trezentos milhões de obesos e calcula-se que 30% da produção alimentar seja desperdiçada, não chegando a ser consumida.

É preciso, e é possível, corrigir este absurdo, que é também uma vergonha para a humanidade. Se todos fizermos melhores escolhas alimentares, se comermos melhor, se formos mais solidários e responsabilizados pelos níveis incomportáveis do desperdício, teremos melhor saúde, viveremos melhor, e contribuiremos, como devemos, para os equilíbrios globais, essenciais à nossa vida colectiva.

Sobre o futuro da alimentação no mundo, Charles Godfray, professor de alimentação em Oxford , dizia há algum tempo, numa conferência na Fundação Gulbenkian, organizada em parceria com o jornal PÚBLICO: “Se falharmos na alimentação falharemos em tudo o resto. Não ajudaremos os países mais pobres, esqueceremos a biodiversidade, nada poderemos fazer quanto às alterações climáticas e comprometeremos a nossa evolução ao longo das próximas décadas”. Estou de acordo com esta afirmação. Só acrescentarei o óbvio: para não falharmos na alimentação não poderemos falhar na agricultura.

Autoria e outros dados (tags, etc)

Cultivar o futuro . Global Notícias, 2014.03.07

 

Seria difícil imaginar-se, há apenas um par de anos atrás, que o sector agrícola pudesse dar origem a uma grande conferência, como a de ontem, sexta-feira, no local de maior glamour da segunda cidade do País (a Casa da Música, no Porto), com 300 pessoas presentes.

Mais do que isso, 20 mil milhões de investimento nos últimos anos fazem acreditar aos responsáveis do sector de que é possível alterar o paradigma português: um país que importa grande parte do que é a sua alimentação. Só o défice comercial agrícola com Espanha é de quatro mil milhões.

Nuno Amado, presidente da comissão executiva do BCP, anunciou que pretende aumetar o investimento do banco no setor pimário para 20% da quota de mecado Perante a “emergência nacional” em que Portugal está mergulhado, o mercado mexe-se: Nuno Amado, presidente do Millennium bcp anunciou ontem que pretendia aumentar a quota de mercado no sector primário – sobretudo agricultura – de 15% para 20% em dois anos. “E prometemos fazer a nossa parte, ou seja, adequar os produtos financeiros para ciclos longos, já que a agricultura também tem ciclos longos de investimento, exploração e até de cobrança.” Em contrapartida pediu aos agentes do sector que envolvam mais capital próprio e sublinhou o papel crucial que a empresa de garantia mútua, a AgroGarante, pode ter no apoio à facilitação de garantias à banca (que muitos agricultores não podem dar).

Por seu lado, a Frulact, uma das líderes nacionais na transformação de fruta, voltou a lançar o repto de maior produção nacional de fruta de qualidade. A empresa da Maia quer aumentar o volume de produto nacional nos seus produtos, atualmente limitado a 10% (porque não consegue comprar em quantidade e prazo atempado em Portugal). João Miranda, líder da Frulact, lamentou fortemente que, por exemplo, os produtores de morango não estejam suficientemente organizados e capazes de vender mais e melhor “excelente morango português”. Acrescente-se entretanto que o Governo mantém a máxima intensidade na aprovação de “candidaturas viáveis” apresentadas ao Ministério da Agricultura no âmbito do Proder – Programa de Desenvolvimento Rural, frisou ontem o secretário de Estado da Agricultura, José Diogo Albuquerque. Depois de quatro anos disfuncionais (até 2010), em que quase nada foi aprovado, neste momento continuam abertas as candidaturas a fundos comunitários com verbas ainda disponíveis do anterior quadro comunitário de apoio. Quando todos os regulamentos dos novos fundos 2014-2020 estiverem publicados, abre-se um novo ciclo mas sem paragens burocráticas que comprometam o investimento. Luís Mira, da Confederação da Agricultura Portuguesa (CAP), rejeitou entretanto a possibilidade de que há muitos terrenos abandonados ao longo do País. “Temos seis milhões de hectares de terrenos agrícolas e apenas 125 mil hectares estão abandonados”, disse, considerando que a iniciativa da “Bolsa de Terras” anunciada pelo Governo nasce ao contrário – o primeiro a disponibilizar as suas terras sem aproveitamento deveria ser o próprio Estado, coisa que não aconteceu. “É uma questão ideologicamente interessante mas não vai ser funcional.”As dificuldades burocráticas até que se consiga arrendar terrenos de outrem “vai demorar 20 anos”.

O secretário-geral da CAP diz que, com tantas opções tecnológicas, incluindo as culturas hidropónicas (em estufa, sem terra), a questão da falta de solo agrícola não é um entrave ao investimento.

 

O painel de debate da conferênca: António Perez Metelo, Luís Pereira Coutinho, Luís Mira, Jorge Dias, Manuel Cardoso e António Fontainhas Fernandes. ( Pedro Granadeiro/Global Imagens )

Autoria e outros dados (tags, etc)

Ditcted2012d3 En by papinto

Autoria e outros dados (tags, etc)

Autoria e outros dados (tags, etc)

Agweb

Nothing improves an economy as efficiently as agriculture, the Microsoft founder says

Investing in agriculture is essential if the fight against world poverty is to succeed, according to Microsoft founder Bill Gates, who spoke at an International Agriculture and Food Security Briefing sponsored by Farmers Feeding the World, a Farm Journal Foundation Initiative, and the Senate Hunger Caucus.

"It’s been proven that of all the interventions to reduce poverty, improving agricultural productivity is the best. All the other different economic activity—yes it trickles down. But nothing as efficiently as in agriculture," Gates said to a packed conference room in the U.S. Senate office building.

Several congressmen and many staff attended the briefing, along with key influencers in agricultural policy. The event offered a rare chance to hear from Gates himself about his foundation and its work in agriculture.

"I want to talk about why investments in agriculture make such a big difference in the lives of the poor," Gates said. "Our agriculture program has become one of our biggest, and it’s one of our fastest growing. That’s because we’ve seen huge results, and without it we don’t see a way of achieving our goals, where kids can be healthy, their brains can fully develop, and they can have a chance to live a normal life.

"Most of the poor people of the world are farmers—farmers with very small plots of land, who have to deal with a great deal of uncertainty because they don’t know what their yield is going to be, and in many years they are making just enough—or not even enough—to have the food that they expect."

Read on to see more of what Gates had to say.
 

The Green Revolution: A Model for Success

"There is a history of success here. Certainly the green revolution is one of those unbelievable stories that’s quite exciting. I was down in Mexico at CIMMYT (International Maize and Wheat Improvement Center) a couple months ago. They were putting in a Norm Borlaug statute down there, talking about how they are carrying on in the spirit of his work, to help everyone in the world put in high-productivity crops.

"That revolution certainly saved hundreds of millions of lives. But it’s a revolution that’s not yet complete. And if we take the world as a whole, in the ‘80s and ‘90s, there was a shift away from agriculture, not focusing on what still had to be done. And particularly if we look at Africa, because of the breadth of eco-systems there, this green revolution, this increase in productivity, is not noticeable at all.

"You take that history of yield chart, and not only are they at a very low level, but they are essentially staying at that level. So it’s time for a renaissance of the green revolution. Obviously we learned a lot in the first green revolution about sustainability, use of agriculture, making sure it reaches out to the very poorest farmers. This time around, as we redo what was done well, we can do it in an even smarter way.

"The metrics here are pretty simple. About three-quarters of the poor who live on these farms need greater productivity, and if they get that productivity we’ll see the benefits in income, we’ll see it in health, we’ll see it in the percentage of their kids who are going off to school. These are incredibly measurable things.

"The great thing about agriculture is that once you get a bootstrap—once you get the right seeds and information—a lot of it can be left to the marketplace. This is a place where philanthropy and government work, and market-based activity, meet each other."

Increasing Investment in Research

"It’s been proven that of all the interventions to reduce poverty, improving agricultural productivity is the best. All the other different economic activity—yes it trickles down. But nothing as efficiently as in agriculture."

"Our agricultural program has a number of aspects. A fair bit of it is in the upstream area. We’ve become one of the larger funders of the CGIAR system. Places like CIMMYT do really unbelievable work. And given the impact of their work, and the importance of the work, we’ve all got to be disappointed that funding is not even at peak levels. It’s come off from the peaks of a long time ago, and it needs to be renewed. In particular, given the opportunities of taking the genetic revolution and various digital approaches that track productivity and look at genotype and phenotype information, we have to dedicate ourselves to upgrade the tools and the skills that are in those centers, so that they are benefitting from the latest science.

"A lot of the research is done here in the United States. It’s research on things like wheat rust, productivity, and various stresses like drought management. Many of these things are going to be beneficial throughout the globe. Stopping wheat rust is not just a benefit for the poor, it’s a benefit for wheat farmers in middle income and high income countries. I think we’ve lost track of the public goods here, whether it's coming from the research centers or from the universities. We are under-investing.

"That’s always a challenge in capitalism—innovation is under-invested in, and particularly innovation on behalf of the poorest. So all of us with our voices, and this is certainly one of the goals of the foundation, must not only fund agricultural research, but encourage others to do that as well.

"Of course just developing new seeds is not enough. You’ve got to get into the countries and look at the policies, the land policies, the Extension policies, the research policies, the acceptance of GMO techniques. And make sure every one of those things is managed in a very strong way. There’s a lot of research, a lot of benefits, that’s not getting out to the farmers who need it.

"The U.S. traditionally has played a key role in agriculture research. It has played a key role in food aid. What we see in the numbers, though, is that agricultural research has been flat-lined. The PCAST (President’s Council of Advisors on Science and Technology) report went through and looked at how that affected not just the poorest countries but everyone, and talked about a need to increase that investment.

"The leverage of that investment will be particularly strong because of new advances, new digital approaches. In fact, just recently the foundation announced an initiative with the Department of Agriculture about open data for agriculture. [We are taking] what’s called cloud techniques, or big data techniques, and gathering together all the information—whether it’s understanding which policies work, how to direct crop breeding activity, or the genotype, phenotype information data basis. [We want] everybody leveraging everybody else’s work to move forward here."

Funding a Better Future

"I’m very optimistic that we can increase productivity. One of the ways that all of us can renew our commitment to this is going down and seeing firsthand how U.S. investments are making a difference in the lives of small-holder farmers. My wife last year went to Tanzania. The [trip] happened to be led by Sen. Graham. It was pretty amazing, even for Melinda, who has been involved in this for a long time, to go out and meet the farmers and talk to them about what they were going to do as they got more productivity.

"One woman had a new maize variety supported by the U.S., and what she had seen is that it had doubled her income. And everyone there was looking around and seeing that she had to walk three miles a day to get water. No electricity, no transport. So they were very curious to ask her what she was going to do now that she had this additional income. And she had a very straight-forward answer: invest in her children’s education so they would have an even better future.

"So when you hear the kind of impact this stuff can have, the scale that it’s needed, I think we all get very dedicated to this work. So I’m glad to be here and thank you for your commitment to this cause, and hopefully we can recruit more resources both in the U.S. and around the world to move even faster."

Autoria e outros dados (tags, etc)

 

 Publicado em 19 de Dezembro de 2012.

greensavers.sapo.pt

 

A quantidade de terra usada para cultivo em todo o mundo está no seu auge e uma área com duas vezes o tamanho de França pode voltar à natureza em 2060, devido à maior produtividade dos solos e a um crescimento mais lento da população.

Um relatório divulgado esta semana diz que a humanidade alcançou o pico das culturas agrícolas. Isto entra em conflito com estudos da ONU que adiantam que serão necessárias mais terras cultiváveis nas próximas décadas, de modo a evitar o aumento da fome e dos preços, à medida que a população mundial cresce além dos sete mil milhões.

Este novo estudo calcula que a utilização de mais culturas para biocombustíveis e um maior consumo de carne em economias emergentes, como a China ou a Índia – exigindo mais terras cultiváveis para alimentar o gado –, não irão compensar a queda do pico causado por uma melhor produtividade.

Se isto se confirmar, a terra libertada a partir das colheitas será 10% da que está actualmente em uso – o equivalente a 2,5 vezes a área total de França ou mais do que todo o território arável agora cultivado na China.

“Acreditamos que a humanidade atingiu o pico das suas culturas e que as muitas terras estão prontas para voltar à natureza”, explicou Jesse Ausubel, director do Programa para o Meio Ambiente Humano, da Universidade Rockefeller, em Nova Iorque. “Felizmente, a causa não é o esgotamento da terra arável, como muitos temiam, mas sim a moderação da população e os gostos dos agricultores”, escreveu ele.

O relatório, fornecido à Reuters por Ausubel, projecta que cerca de 150 milhões de hectares possam ser restabelecidos para as suas condições naturais, como florestas, em 2060. Esta previsão é equivalente a 1,5 vezes a área do Egipto.

O estudo avança que a terra arável mundial e as áreas de cultivo permanente subiram de 1.370 mil milhões de hectares em 1961 para 1.53 mil milhões em 2009. E prevê uma queda para 1.38 mil milhões de hectares em 2060.

O estudo de Ausubel admite fazer muitas suposições – a produtividade agrícola crescente, o abrandamento do crescimento populacional, o aumento relativamente lento no uso de plantas para produzir biocombustíveis, o aumento moderado no consumo de carne – que podem distorcer o resultado obtido se estiverem erradas.

Também não foram tidas em conta as grandes mudanças climáticas que os estudos da ONU dizem que poderiam interromper a produção agrícola, como o aumento das temperaturas, as chuvas menos previsíveis, mais inundações, secas, desertificação e as ondas de calor.

Autoria e outros dados (tags, etc)